实验原理:
从大肠杆菌细胞中分离质粒DNA的方法很多。其分离可依据分子大小不同、碱基组成的差异以及质粒DNA的超螺旋共价闭合环状结构的特点来进行。目前常用的有碱变性提取法,羧基磷灰石柱层析法、质粒DNA释放法、两相法等。其中碱变性法提取效果良好,既经济且收得率较高,提取到的质粒DNA可用于酶切、连接与转化。
碱变性抽取质粒DNA是基于染色体DNA于质粒DNA的变形与复性的差异而达到分离的目的。在pH高达12.6的碱性条件下,染色体的氢键断裂,双螺旋结够解开而变性。质粒DNA的大部分液断裂,但超螺旋共价闭合环状结构的两条互补链不会完全分离,当以pH4.8的NaAC高盐缓冲液调节其pH值至中性时,变性的质粒DNA又恢复到原来的构型,保存在溶液中,而染色体DNA不能复性而形成的缠连得网状结构。通过离心,染色体DNA与不稳定的大分子RNA、蛋白质-SDS复合物等一起沉淀下来而被除去。
一、材料
LB培养基上生长的菌落
二、设备
振荡培养箱、微量离心管、台式高速离心机、恒温高速离心机、冰箱、微型电泳槽
易生物仪器库:https://www.ebioe.com/yp/product-list-42.html
易生物试剂库:https://www.ebioe.com/yp/product-list-43.html
三、试剂准备
1、溶液Ⅰ:50mM葡萄糖,25mM Tris-HCl(pH8.0),10mM EDTA(pH8.0)。1M Tris-HCl(pH8.0) 12.5ml,0.5M EDTA(pH8.0)10ml,葡萄糖4.730g,加ddH2O至500ml。高温高压灭菌15min,贮存于4℃。
2、溶液Ⅱ:0.2N NaOH 1ml,10%SDS 1ml,加ddH2O至10ml。使用前临时配置。
3、溶液Ⅲ:醋酸钾(KAc)缓冲液(pH4.8)。5M Kac 300ml,冰醋酸57.5ml,加ddH2O至500ml、4℃保存备用。
4、TE:10mM Tris-HCl(pH8.0),1mM EDTA (pH8.0)。1M Tris-HCl(pH8.0)1ml,0.5M EDTA(pH8.0)0.2ml,加ddH2O至100ml。高压湿热灭菌20min,4℃保存备用。
5、苯酚/氯仿/异戊醇(25:24:1)
6、乙醇(无水乙醇、70%乙醇)
7、5×TBE:Tris碱54g,硼酸27.5g,EDTA-Na2·2H2O4.65g,加ddH2O至1000ml。
高压湿热灭菌20min,4℃保存备用。
8、溴化乙锭(EB):10mg/ml
9、Rnase A(RNA酶 A):不含DNA酶(Dnase-free)Rnase A的10mg/ml,TE配置,沸水加热15min,分装后贮存于-20℃。
10、6×loading buffer(上样缓冲液):0.25%溴酚蓝,0.25%二甲苯青FF,40%(W/V)蔗糖水溶液。
11、1% 琼脂糖凝胶:称取0.2g琼脂糖于三角烧瓶中,加20ml 1×TAE,微波炉加热至完全溶化,冷却至60℃左右,加EB母液(10mg/ml)至终浓度0.5μg/ml(注意:EB为强诱变剂,操作时带手套),轻轻摇匀。缓缓倒入架有梳子的电泳胶板中,勿使有气泡,静置冷却30min以上,轻轻拔出梳子,放入电泳槽中(电泳缓冲液1×TAE),即可上样。
实验原理:
从大肠杆菌细胞中分离质粒DNA的方法很多。其分离可依据分子大小不同、碱基组成的差异以及质粒DNA的超螺旋共价闭合环状结构的特点来进行。目前常用的有碱变性提取法,羧基磷灰石柱层析法、质粒DNA释放法、两相法等。其中碱变性法提取效果良好,既经济且收得率较高,提取到的质粒DNA可用于酶切、连接与转化。
碱变性抽取质粒DNA是基于染色体DNA于质粒DNA的变形与复性的差异而达到分离的目的。在pH高达12.6的碱性条件下,染色体的氢键断裂,双螺旋结够解开而变性。质粒DNA的大部分液断裂,但超螺旋共价闭合环状结构的两条互补链不会完全分离,当以pH4.8的NaAC高盐缓冲液调节其pH值至中性时,变性的质粒DNA又恢复到原来的构型,保存在溶液中,而染色体DNA不能复性而形成的缠连得网状结构。通过离心,染色体DNA与不稳定的大分子RNA、蛋白质-SDS复合物等一起沉淀下来而被除去。
一、材料
LB培养基上生长的菌落
二、设备
振荡培养箱、微量离心管、台式高速离心机、恒温高速离心机、冰箱、微型电泳槽
三、试剂准备
1、溶液Ⅰ:50mM葡萄糖,25mM Tris-HCl(pH8.0),10mM EDTA(pH8.0)。1M Tris-HCl(pH8.0) 12.5ml,0.5M EDTA(pH8.0)10ml,葡萄糖4.730g,加ddH2O至500ml。高温高压灭菌15min,贮存于4℃。
2、溶液Ⅱ:0.2N NaOH 1ml,10%SDS 1ml,加ddH2O至10ml。使用前临时配置。
3、溶液Ⅲ:醋酸钾(KAc)缓冲液(pH4.8)。5M Kac 300ml,冰醋酸57.5ml,加ddH2O至500ml、4℃保存备用。
4、TE:10mM Tris-HCl(pH8.0),1mM EDTA (pH8.0)。1M Tris-HCl(pH8.0)1ml,0.5M EDTA(pH8.0)0.2ml,加ddH2O至100ml。高压湿热灭菌20min,4℃保存备用。
5、苯酚/氯仿/异戊醇(25:24:1)
6、乙醇(无水乙醇、70%乙醇)
7、5×TBE:Tris碱54g,硼酸27.5g,EDTA-Na2·2H2O4.65g,加ddH2O至1000ml。
高压湿热灭菌20min,4℃保存备用。
8、溴化乙锭(EB):10mg/ml
9、Rnase A(RNA酶 A):不含DNA酶(Dnase-free)Rnase A的10mg/ml,TE配置,沸水加热15min,分装后贮存于-20℃。
10、6×loading buffer(上样缓冲液):0.25%溴酚蓝,0.25%二甲苯青FF,40%(W/V)蔗糖水溶液。
11、1% 琼脂糖凝胶:称取0.2g琼脂糖于三角烧瓶中,加20ml 1×TAE,微波炉加热至完全溶化,冷却至60℃左右,加EB母液(10mg/ml)至终浓度0.5μg/ml(注意:EB为强诱变剂,操作时带手套),轻轻摇匀。缓缓倒入架有梳子的电泳胶板中,勿使有气泡,静置冷却30min以上,轻轻拔出梳子,放入电泳槽中(电泳缓冲液1×TAE),即可上样。
四、操作步骤
1、挑取LB固体培养基上生长的单菌落,接种于2.0ml LB(含相应抗生素)液体培养基中,37℃、250rpm振荡培养过夜(约12~14hr)。
2、取1.5ml培养物放入微量离心管中,室温离心8000g×1min,弃上清,将离心管倒置,将液体尽可能流尽。
3、将细菌沉淀重悬于100μl预冷的溶液Ⅰ中,剧烈振荡,使菌体分散均匀。
4、加200μl新鲜配制的溶液Ⅱ,颠倒数次混匀(不要剧烈振荡),并将离心管放置于冰上2~3min,使细胞膜裂解(溶液Ⅱ为裂解液,故离心管中菌液逐渐变清)。
5、加入150μl预冷的溶液Ⅲ,将管温和颠倒数次混匀,见白色絮状沉淀,可在冰上放置3~5min。溶液Ⅲ为中和溶液,此时K+使SDS-蛋白复合物沉淀。
6、加入450μl的苯酚/氯仿/异戊醇,振荡均匀,4℃离心12000g×10min。
7、小心移出上清于一新微量离心管中,加入2.5倍体积预冷的无水乙醇,混匀,室温放置2~5min,4℃离心12000g×15min。
8、1ml预冷的70%乙醇洗涤沉淀1~2次,4℃离心8000g×7min,弃上清,将沉淀在室温下晾干。
9、沉淀溶于20μl TE(含RNase A20μg/ml),37℃水浴30min以降解RNA分子,-20℃保存备用。
提示:
1、实验安排:碱变性法抽提质粒DNA,除了菌体培养、质粒扩增金额和收集菌体外,其提取过程大致可分为三个步骤:从染色体DNA中分离质粒DNA,这是提取过程中最关键的操作步骤;去除质粒DNA中的RNA;进一步纯化质粒DNA,去除蛋白质等杂质。
2、一些试剂的生化作用原理
(1)溶液Ⅰ
溶霉菌:水解菌体细胞壁的主要化学成分肽聚糖中的β-1,4糖苷键,因而具有溶菌作用。
葡萄糖:增加溶液的粘度,防止DNA受机械剪切力作用而降解。
EDTA:金属离子螯合剂,螯合Mg2+,Ca2+等金属离子,抑制脱氧核糖核酸酶(DNase)对DNA的降解作用(DNase 作用时需要一定的金属离子强度作辅基),同时EDTA的存在,有利于溶霉菌的作用。因为溶霉菌的反应要求有较低的离子强度环境。
(2)溶液Ⅱ-NaOH-SDS液
NaOH:核酸在pH值为5~9的溶液中是最稳定的,但pH大于12或小于3时,就会引起双键之间氢键的解离而变性。在溶液Ⅱ中的NaOH浓度为0.2N,加入提取液时,该系统的pH就会高达12.6,因而促使染色体DNA与质粒DNA的变性。
SDS:为阴离子表面活性剂,主要功能有:溶解细胞膜上的脂肪与蛋白,从而破坏细胞膜;解聚细胞中的核蛋白SDS蛋白质结合为复合物,使蛋白变性沉淀下来,但SDS能抑制核糖核酸没的作用,所以在以后的提取过程中,必须把它去除干净,以防用RNase去除RNA时受到干扰。
(3)溶液Ⅲ-3M KAc(pH4.8)溶液:
KAc的水溶液呈碱性,为了调节pH至4.8,必须加入大量的冰醋酸,所以该溶液实际上是KAc-HAc的缓冲液。用pH4.8的KAc溶液是为了把pH 12.6的抽取液pH调回到中性,使变性的质粒DNA能够复性,并能稳定存在。而高盐的3mol∕L KAc有利于变性的大分子染色体DNA、RNA以及SDS-蛋白质复合物凝聚而沉淀之。前者是因为中和核酸上的电荷。减少相斥力而互相聚合,后者是因为钠盐与SDS-蛋白质复合物作用后,能形成溶解度较小的钠盐形式复合物,使沉淀完全。
(4)为什么用无水乙醇沉淀DNA:
此为实验中最常用的沉淀方法。乙醇的优点是低度极性,可以以任意比例和水相混容,乙醇与核酸不会起任何化学反应,对DNA很安全,因此是理想的沉淀剂。
DNA溶液时以水合状态稳定存在的DNA,当加入乙醇时,乙醇会夺去DNA周围的水分子,使DNA失水而易于聚合。一般实验中,是加2倍体积的无水乙醇与DNA相混合。其乙醇的最终含量占67%左右。因而也可改用95%乙醇来代替无水乙醇(因无水乙醇价格更贵),但加95%乙醇使总体积增大,而DNA在溶液中总有一定程度的溶解,因而DNA损失也增大,尤其用多次乙醇沉淀时,会影响收得率。折衷的做法是初次沉淀DNA是可用95%乙醇代替无水乙醇,最后的沉淀步骤要使用无水乙醇。也可以用异丙醇选择性沉淀DNA,一般在室温下放置15~30min即可。
使用乙醇在低温条件下沉淀DNA,分子运动大大减少,DNA易于聚合而沉淀,且温度越低,DNA沉淀得越快。
(5)RNase处理核糖核酸后,再次沉淀DNA时为什么一定要加NaAc至最浓度达0.1~0.25M。
在pH 8左右的DNA溶液中,DNA分子是带负电荷的,加一定浓度的NaAc,使Na+中和DNA分子上的负电荷,减少DNA分子之间的同性电荷相斥力,易于互相聚合而形成DNA纳盐沉淀。当加入大量盐溶液浓度太低时,只有部分DNA形成DNA钠盐聚合,这样就造成DNA沉淀不完全。当加入的盐溶液浓度太高时,其效果也不太好,在沉淀的DNA中,由于过多的盐杂质存在,影响DNA的酶切等反应,必须要进行洗涤或重沉淀。
(6)为什么将DNA保存于TE缓冲液中?
在基因操作实验中,选择缓冲液的主要原则是考虑DNA的稳定性及缓冲液成分不产生干扰作用。磷酸盐缓冲系统(pKa2=7.2)、硼酸系统(pKal=9.24)等虽然也都符合细胞内环境的生理范围(pH),可以作为DNA的保存液,但在转化实验时,磷酸根将与Ca2+产生沉淀;在DNA酶反应时,不同的煤对辅助因子的种类及数量要求不同,有的要求高盐离子浓度,有哦则要求低盐离子浓度,采用Tris-HCL(pKa=8.0)的缓冲系统,由于缓冲对时Tris+/Tris,不存在金属离子的干扰作用,故在提取或保存DNA时,大都采用Tris-HCL系统,而TE缓冲液中的EDTA更能稳定DNA的活性。
操作要领:
1、该实验成功的标志是把染色体DNA,蛋白质与RNA去除干净。获得一定收得率的质粒DNA。去掉染色体DNA最为重要,也较困难。因为在全部提取过程中,只有一次机会去除染色体DNA,其关键步骤是加入溶液Ⅱ与溶液Ⅲ时,控制变性与复性操作时机,既要使试剂与染色体DNA充分作用使之变性;又要使染色体DNA不断裂成小片段而能与质粒DNA相分离。这就要求试剂与溶菌液充分摇匀。摇动时用力适当。一般加入SDS后要注意不能过分用力振荡,但又必须让它反应充分。
2、当加入溶液Ⅱ5min后,若没有看到溶液变稠时,实验不能再继续做下去了。
3、配置试剂时,要用重蒸水配置外,其器皿必须严格清洗,最后要用重蒸水冲洗三次,凡可以进行灭菌的试剂与用具都要经过高压蒸汽灭菌,防止其他杂质或酶对DNA的降解,对Ep管、Tip头与非玻璃离心管等只能湿热灭菌,然后放置在50℃温箱中烘干使用。
4、用乙醇沉淀DNA时,要观察水相与乙醇之间没有分层现象之后,才可放在冰箱中去沉淀DNA。