来自德国海德堡大学,美国Fred Hutchinson癌症研究中心,加拿大卡尔加里大学等处组成的国际研究团队解析了一种特殊的细胞周期:核内周期的作用机制,这将有助于科学家们深入了解细胞如何生长,以及细胞生长率为何有时变快,有时变慢,为农业和医药研究提供新思路。这一研究成果公布在Nature杂志上。

文章的通讯作者是德国海德堡大学的生物学家,及癌症研究专家Bruce A. Edgar教授,他曾在上个世纪80年代,曾同样在Nature杂志上发表了有丝分裂细胞周期的开创性成果。其研究组近期刚刚赢得欧洲研究基金的260万欧元经费。
核内周期(endocycle)是指正常有丝分裂细胞周期的变异形式,细胞只进行DNA复制,而不发生胞质分裂,形成了拥有多线染色体(polytene chromosome)的多倍体细胞,比如果蝇胚胎第6期时,滤泡细胞上皮转变为核内周期。这一细胞周期在动物,植物,某些人类组织中广泛存在,比如人类的肝脏,以及肌肉。
在这篇文章中,研究人员利用遗传学方法,分析了模式动物果蝇的核内周期,首先他们聚焦于唾液腺体——这些细胞在果蝇生命周期中会发生10次核内周期DNA复制,从而造成其细胞大小超过正常细胞上千倍。
研究人员分析了这些细胞的转录因子,和驱使核内周期和DNA复制的酶,结果他们发现E2F这一转录因子在其中的关键作用,在DNA复制过程中,CRL4这种酶会暂时消化E2F,在E2F恢复之前,DNA会复制,这一周期会重复。E2F和CRL4就像一个分子振荡器,帮助这一周期完成。
研究人员还发现了细胞生长率能调控E2F积累的速度,从而控制细胞DNA以什么速度复制。这些研究结果都表明E2F这一转录因子在核内周期调控中扮演了重要角色。
Edgar教授表示,“这是二十多年来首个被解开的新细胞周期之谜”,“一般来说,核内复制这一机制所用到的基因产物和原理,在所有的细胞中都能用于调控DNA复制”,因此这项研究对于许多包含有异常细胞增殖的疾病来说,都具有重要的意义,包括癌症,以及一些退行性疾病。
除此之外,Edgar教授研究组还获得了肠道干细胞研究的最新成果:他们发现细胞自身的表皮生长因子受体EGFR信号通道扮演着重要的作用:它刺激干细胞分裂,并使他们的子细胞替换受损伤的肠道上皮细胞。该信号通道也可能参与了人体中大肠癌的滋生。(生物探索)
相关英文论文摘要:
Control of Drosophila endocycles by E2F and CRL4CDT2
Endocycles are variant cell cycles comprised of DNA synthesis (S)- and gap (G)-phases but lacking mitosis. Such cycles facilitate post-mitotic growth in many invertebrate and plant cells, and are so ubiquitous that they may account for up to half the world’s biomass. DNA replication in endocycling Drosophila cells is triggered by cyclin E/cyclin dependent kinase 2 (CYCE/CDK2), but this kinase must be inactivated during each G-phase to allow the assembly of pre-Replication Complexes (preRCs) for the next S-phase. How CYCE/CDK2 is periodically silenced to allow re-replication has not been established. Here, using genetic tests in parallel with computational modelling, we show that the endocycles of Drosophila are driven by a molecular oscillator in which the E2F1 transcription factor promotes CycE expression and S-phase initiation, S-phase then activates the CRL4CDT2 ubiquitin ligase, and this in turn mediates the destruction of E2F1 . We propose that it is the transient loss of E2F1 during S phases that creates the window of low Cdk activity required for preRC formation. In support of this model overexpressed E2F1 accelerated endocycling, whereas a stabilized variant of E2F1 blocked endocycling by deregulating target genes, including CycE, as well as Cdk1 and mitotic cyclins. Moreover, we find that altering cell growth by changing nutrition or target of rapamycin (TOR) signalling impacts E2F1 translation, thereby making endocycle progression growth-dependent. Many of the regulatory interactions essential to this novel cell cycle oscillator are conserved in animals and plants1, 2, 8, indicating that elements of this mechanism act in most growth-dependent cell cycles.
英文论文链接:https://www.nature.com/nature/journal/vaop/ncurrent/full/nature10579.html
