摘要:目前,我国有9300万名乙型肝炎病毒携带者,乙肝患者数量则高达2000万人,乙肝在亚洲地区的感染率也达到了10%。
乙肝不仅给人们带来病痛,也引发歧视等社会问题。作为国家医药卫生体制改革重大公共卫生项目,2009年4月,我国正式启动了覆盖所有15岁以下人群的乙肝疫苗补种项目。
面对1.7亿人的庞大接种人群,成本和效益之间的博弈显得尤为关键。现在,一个新的数学模型支持了中国疾控中心这项决策。
美国斯坦福大学的运筹学家David W. Hutton和Margaret L. Brandeau,以及该校医学院亚洲肝病中心和外科学系的Samuel K.So评估了数个具有潜力的乙肝筛查、接种及治疗干预项目,力图找到最具成本效益的方法,让每一分钱都花在刀刃上。
研究人员针对中国乙肝疫苗补种项目进行了成本效益分析,他们发现,对那些与乙肝感染者有密切接触的人群进行疫苗接种是十分具有成本效益的做法。
根据这一模型,中国乙肝疫苗补种项目能够预防近800万例急性感染、40万例慢性感染及近7万例死亡。项目所需要的乙肝疫苗将耗费5400万美元,但却能为接种儿童节约14亿美元。
在美国,慢性疾病患者的整体治疗成本是初期筛查成本的100多倍。这项研究提供了令人信服的证据,在此基础上形成了2011年“健康和人类服务行动计划”,致力于控制病毒肝炎的隐形传播,为美国居民推荐慢性乙肝感染的常规筛查措施。
这篇题为《用正确的运筹学做好事:支持具有成本效益的乙肝干预措施》的研究论文发表在运筹学和管理学研究协会旗下的期刊《界面》(Interfaces)上。
“在医药领域,决策者越来越多地追寻有效性和成本效益的证据来支持他们的决定。”亚洲肝病中心全球健康协调员Alena Groopman评论称,“研究者所做的建模工作具有特别重要的意义,它能够加速政策变革,改善与乙肝病毒相关的健康问题。”
生物探索推荐英文论文摘要:
Doing Good with Good OR: Supporting Cost-Effective Hepatitis B Interventions
Abstract: In an era of limited health-care budgets, mathematical models can be useful tools to identify cost-effective programs and support policy makers in making informed decisions. This paper reports the results of our work, which we carried out over several years with the Asian Liver Center at Stanford University. Hepatitis B is a vaccine-preventable viral disease that, if untreated, can lead to death from cirrhosis and liver cancer. It is a major public health problem, particularly in Asian populations. We used new combinations of decision analysis and Markov models to analyze the cost effectiveness of several interventions to combat the disease in the United States and China. The results of our operations research (OR)-based analyses have helped change US public health policy on hepatitis B screening for millions of people, and have helped encourage policy makers in China to enact legislation to provide free catch-up vaccination for hundreds of millions of children. These policies are an important step in eliminating health disparities, reducing discrimination, and ensuring that millions of people can now receive the hepatitis B vaccination or life-saving treatment that they need.
Key Words: health care; economics; cost-benefit analysis; decision analysis; epidemiology; government services
