Nature:5-羟甲基胞嘧啶在基因组中的分布

2011-05-17 16:06 · pobee

波士顿儿童医院等机构的研究人员开发出两种方法,来分析5-羟甲基胞嘧啶(5hmC)的基因组定位。该研究成果近日发表在《Nature》在线版上。 5-羟甲基胞嘧啶是一种修饰的碱基,以低水平存在于哺乳动物的多种细胞类型中。5hmC是TET家族的酶通过氧化5-甲基胞嘧啶(5-mC

波士顿儿童医院等机构的研究人员开发出两种方法,来分析5-羟甲基胞嘧啶(5hmC)的基因组定位。该研究成果近日发表在《Nature》在线版上。

5-羟甲基胞嘧啶是一种修饰的碱基,以低水平存在于哺乳动物的多种细胞类型中。5hmC是TET家族的酶通过氧化5-甲基胞嘧啶(5-mC)产生的。5hmC和TET蛋白都被认为与干细胞和癌症相关,但是关于5hmC在基因组范围内的分布,目前仍了解得不多。

解码神秘的第六碱基5-羟甲基胞嘧啶

于是,研究人员开发出两种新颖而特异的方法,来分析5hmC的基因组定位。第一种方法称为GLIB。GLIB是糖基化、高碘酸氧化和生物素化的缩写。它主要利用一些酶和化学反应的组合来分离出包含单个5hmC的DNA片段。首先利用T4噬菌体β-葡萄糖基转移酶(BGT)在每个5hmC上添加一个葡萄糖分子,然后用高碘酸钠氧化葡萄糖,它将邻近的羟基转化成醛基,之后用醛基反应性探针进一步修饰,在每个5hmC上添加两个生物素分子。

第二种方法是通过亚硫酸氢钠处理基因组DNA,将5hmC转换成5-亚甲基磺酸胞嘧啶(CMS),然后利用CMS特异的抗血清将包含CMS的DNA免疫沉淀。

之后,研究人员对小鼠胚胎干细胞中包含5hmC的片段进行高通量测序。对于GLIB处理的DNA,他们使用了Helicos单分子DNA测序,这种方法不需要扩增步骤,从而避免了PCR偏向。对于CMS富集的基因组DNA,他们使用了Illumina测序仪,其较长的读长适合亚硫酸氢盐处理的DNA与基因组的高效比对。

研究人员发现,片段主要集中在外显子和转录起始位点附近。5hmC尤其集中在启动子含有组蛋白H3赖氨酸27三甲基化(H3K27me3)和组蛋白H3赖氨酸4三甲基化(H3K4me3)这两个标记的基因起始位点。

此研究结果表明,5hmC可能在转录调控中发挥作用,以及5hmC和5mC有着不同的转录作用。5hmC只与“准备就绪”的染色体配置以及在分化中上调的基因相关,因此可能参与了启动快速激活的位点。

Tet家族基因及5hmC的功能研究也是当前表观遗传学领域的研究热点之一,近期多位华人科学家在这一研究中取得突破性研究成果。复旦大学生物医学研究院表观遗传学实验室与哈佛医学院的研究人员密切合作,研究了Tet1在小鼠胚胎干细胞中的生物学功能。来自美国北卡罗来纳大学医学院生物化学与生物物理学系张毅教授领导的研究小组证实Tet1蛋白不仅能调控CpG富集启动子处的DNA甲基化水平,而且能促进干细胞中与多能性相关的因子的转录,以及参与Polycomb靶向的发育调控因子的抑制。

 

原文检索:

Genome-wide mapping of 5-hydroxymethylcytosine in embryonic stem cells

Nature (2011) doi:10.1038/nature10102

摘要:

5-hydroxymethylcytosine (5hmC) is a modified base present at low levels in diverse cell types in mammals1, 2, 3, 4, 5. 5hmC is generated by the TET family of Fe(II) and 2-oxoglutarate-dependent enzymes through oxidation of 5-methylcytosine (5mC)1, 2, 4, 5, 6, 7. 5hmC and TET proteins have been implicated in stem cell biology and cancer1, 4, 5, 8, 9, but information on the genome-wide distribution of 5hmC is limited. Here we describe two novel and specific approaches to profile the genomic localization of 5hmC. The first approach, termed GLIB (glucosylation, periodate oxidation, biotinylation) uses a combination of enzymatic and chemical steps to isolate DNA fragments containing as few as a single 5hmC. The second approach involves conversion of 5hmC to cytosine 5-methylenesulphonate (CMS) by treatment of genomic DNA with sodium bisulphite, followed by immunoprecipitation of CMS-containing DNA with a specific antiserum to CMS5. High-throughput sequencing of 5hmC-containing DNA from mouse embryonic stem (ES) cells showed strong enrichment within exons and near transcriptional start sites. 5hmC was especially enriched at the start sites of genes whose promoters bear dual histone 3 lysine 27 trimethylation (H3K27me3) and histone 3 lysine 4 trimethylation (H3K4me3) marks. Our results indicate that 5hmC has a probable role in transcriptional regulation, and suggest a model in which 5hmC contributes to the ‘poised’ chromatin signature found at developmentally-regulated genes in ES cells.

关键词: