提示:
研究人员发现了一种能够判断哪些成体细胞或分化细胞被成功重编程为原始类胚胎细胞的方法,这样的细胞最适合应用于治疗。
该发现有望促进未来的研究工作,使其成为最为高效且有效的治疗方法
最近有中国研究者报道,他们发现了一种能够判断哪些成体细胞或分化细胞被成功重编程为原始类胚胎细胞的方法,这样的细胞最适合应用于治疗。
上周《Journal of Biological Chemistry》发表了一篇由中科院两个院所团队合作研究的文章,作者在小鼠多能干细胞及iPS细胞中发现一种特殊的标记因子。这种标记是一个小RNA簇,该小RNA簇的表达水平与多能性水平(干性)密切相关(多能性越强,干细胞分化为特定组织、器官或个体的可能性越高。)。
“我们在小鼠基因组中找到一个编码若干基因的基因组区域和一大簇miRNA,它们在全能胚胎干细胞和iPS细胞中是高表达的,但是在部分多能iPS细胞中其表达明显下降,这说明可以将Dlk1-Dio3区作为标记物。”该文章的作者之一,在中科院动物所工作的周琪说,“在多能性水平不同的细胞系中,我们未发现其它有如此明显表达差异的基因组区域。”
2006年日本首先诱导产生iPS细胞,在此之后,周琪及其他研究者开始研究重编程的成体细胞是否拥有足够的多能性以发育成完整的动物,就像胚胎干细胞那样。
去年夏天,周琪宣布其研究团队成功获得重编程小鼠成体细胞,并将其注入胚胎后获得27个存活的个体,该结果明确显示,iPS细胞和胚胎干细胞一样,能够产生健康的成熟个体。尽管该结果被誉为是巨大的研究进展,他们却发现并非所有的iPS细胞都那么完美:很多iPS细胞系不能用来产生小鼠,而且此方法生成的小鼠一部分带有异常。
“获得拥有完全多能性iPS细胞的成功率仍然非常低,这严重阻碍了iPS细胞在治疗和其他方面的应用。”周琪说。
周琪及其研究团队认为,多能性水平不同的iPS细胞在内源基因表达上存在差异,并且这种差异能够在细胞培养的早期进行鉴定,以便去除低多能性细胞系,集中高多能性细胞系。为此,周琪与中科院遗传发育所的生物信息学家王秀杰合作进行研究。
他们在合作研究中运用Solexa技术,比较了胚胎干细胞和不同遗传背景、不同多能性水平的iPS细胞系的小RNA表达谱。
“大约有50个miRNA在这个区域编码,而且在多能性水平不同的干细胞系中,这些miRNA都具有一致且显著的表达差异”王秀杰说,“从这些结果来看,在早期就可以区分出多能性水平不同的iPS细胞,并由此大幅提高完全多能性iPS细胞的产量,并且有助于他们在疾病治疗中的应用。”
由于干细胞能够应用于很多与组织置换或器官移植相关的疾病治疗,如果该团队的发现也适用于人类,周琪认为,“这项发现将在不远的将来为干细胞研究和应用带来一场革命。”
该研究受到科技部国家高技术研究发展计划和国家自然基金的资助。该文章4月9日在线发表于《Journal of Biological Chemistry》,印刷版将在下一期发表。其他合作者包括:Lei Liu, Guan-Zheng Luo, Wei Yang, Xiaoyang Zhao, Qinyuan Zheng, Zhuo Lv, Wei Li, Hua-Jun Wu and Liu Wang.
英文原文原始出处及摘要:
First Published on April 9, 2010, doi: 10.1074/jbc.M110.131995
Activation of the imprinted Dlk1-Dio3 region correlates with pluripotency levels of mouse stem cells
Lei Liu1, Guan-Zheng Luo2, Wei Yang2, Xiaoyang Zhao1, Qinyuan Zheng1, Zhuo Lv1, Wei Li1, Hua-Jun Wu2, Liu Wang1, Xiu-Jie Wang2 and Qi Zhou1
Abstract
Low reprogramming efficiency and reduced pluripotency have been the two major obstacles in induced pluripotent stem (iPS) cell research. An effective and quick method to assess the pluripotency levels of iPS cells at early stages would significantly increase the success rate of iPS cell generation and promote its applications. We have identified a conserved imprinted region of the mouse genome, the Dlk1-Dio3 region, which was activated in fully pluripotent mouse stem cells but repressed in partially pluripotent cells. The degree of activation of this region was positively correlated with the pluripotency level of stem cells. A mammalian conserved cluster of miRNAs encoded by this region exhibited significant expression differences between full- and partial-pluripotent stem cells. Several miRNAs from this cluster potentially target the PRC2 silencing complex, and may form a feed-forward regulatory loop resulting in the expression of all genes and non-coding RNAs encoded by this region in full-pluripotent stem cells. No other genomic regions were found to exhibit such clear expression changes between cell lines with different pluripotency levels, therefore the Dlk1-Dio3 region may serve as a marker to identify fully pluripotent iPS or ES cells. These findings also provide a step forward toward understanding the operating mechanisms during reprogramming to produce iPS cells, and can potentially promote the application of iPS cells in regenerative medicine and cancer therapy. The putative synergetic effects of several miRNAs also furthered the understanding of the coordinative functions of miRNAs in regulating complex biological processes.(作者:Alois>Gratwohl>)