导读:近日,诺丁汉大学的研究者们发现一种存在于低等水蠕虫中的基因可能在癌症发展中起着重要的作用。这项研究是关于低等蠕虫如何为我们深入研究人类卫生与疾病提供新线索的典型。最终它将成为癌症等疾病的新型治疗方法。涡虫广泛分布于自然界,被科学家们称为“不老神仙”。
近日,诺丁汉大学的研究者们发现一种存在于低等水蠕虫中的基因可能在癌症发展中起着重要的作用。来自医学研究理事会(MRC)的专家们发现取出蠕虫中的SMG-1基因会导致正常细胞分裂失控,造成包括肿瘤在内的致命疾病的突然恶化。
此项研究的带头人, 生物学院的Aziz Aboobaker博士称,SMG-1基因可能会扮演阻止生物生长的角色。如果在人类身上也适用,它将会被研制成治疗癌症和其他衰老病症的药剂。同时,这种低等蠕虫可被用作普遍使用的研究人类疾病的模型。此研究由医学研究理事会和生物科学研究理事会(BBSRC)共同资助。研究成果已刊登在《公共科学图书馆遗传学》PLoS Genetics期刊上。
Aboobaker博士说:“越来越多的证据证明一些同类的基因可调节伤口愈合和再生,衰老以及癌症。渦虫提供了一个研究所有这些问题的很好的模型。他们似乎绕过了普通的老化过程并在其严格控制下从干细胞分裂开始重新再造自己身体的某部分,甚至包括它们的头部。我们已经发现众所周知的动物生长调节器 - SMG-1基因和mTOR信号通路配合默契地进行对涡虫生长和再生的严格控制。最重要的是,如果把这种控制移出,我们就会看见活跃的细胞分裂和肿瘤的形成,这将最终至蠕虫于死地。这说明了SMG-1基因是一种我们之前未知的抑制肿瘤发展的基因。”
研究者们相信SMG-1基因扮演着抑制mTOR信号通路的角色,以致于导致人类癌症以及其他与衰老相关病症的恶化。这样一来,存在癌症患者中的SMG-1基因就会发生突变。已经有研究证明突变的SMG-1基因存在于癌症患者身上。现在的研究需进一步探讨这些突变是否导致非正常细胞的生长,以促发癌症的恶化。
医学研究理事会针对干细胞研究,发育生物学和再生医学的项目负责人Paul Colville-Nash说:“这项研究是关于低等蠕虫如何为我们深入研究人类卫生与疾病提供新线索的典型。最终它将成为癌症等疾病的新型治疗方法。涡虫是自由生活的非寄生扁虫。它广泛分布于自然界,并有一些显着的特点 – 如可再生肌肉,皮肤,内脏,甚至整个大脑,不断循环 。它们也因此被科学家们称为“不老神仙”。
SMG-1 and mTORC1 Act Antagonistically to Regulate Response to Injury and Growth in Planarians
Cristina González-Estévez, Daniel A. Felix, Matthew D. Smith, Jordi Paps, Simon J. Morley, Victoria James, Tyson V. Sharp, A. Aziz Aboobaker
Planarian flatworms are able to both regenerate their whole bodies and continuously adapt their size to nutrient status. Tight control of stem cell proliferation and differentiation during these processes is the key feature of planarian biology. Here we show that the planarian homolog of the phosphoinositide 3-kinase-related kinase (PIKK) family member SMG-1 and mTOR complex 1 components are required for this tight control. Loss of smg-1 results in a hyper-responsiveness to injury and growth and the formation of regenerative blastemas that remain undifferentiated and that lead to lethal ectopic outgrowths. Invasive stem cell hyper-proliferation, hyperplasia, hypertrophy, and differentiation defects are hallmarks of this uncontrolled growth. These data imply a previously unappreciated and novel physiological function for this PIKK family member. In contrast we found that planarian members of the mTOR complex 1, tor and raptor, are required for the initial response to injury and blastema formation. Double smg-1 RNAi experiments with tor or raptor show that abnormal growth requires mTOR signalling. We also found that the macrolide rapamycin, a natural compound inhibitor of mTORC1, is able to increase the survival rate of smg-1 RNAi animals by decreasing cell proliferation. Our findings support a model where Smg-1 acts as a novel regulator of both the response to injury and growth control mechanisms. Our data suggest the possibility that this may be by suppressing mTOR signalling. Characterisation of both the planarian mTORC1 signalling components and another PIKK family member as key regulators of regeneration and growth will influence future work on regeneration, growth control, and the development of anti-cancer therapies that target mTOR signalling.
文献链接:https://www.plosgenetics.org/article/info%3Adoi%2F10.1371%2Fjournal.pgen.1002619