忘掉智能手机吧,智能手臂不是更酷么?有朝一日,能够进行简单运算的人体细胞会被植入你的体内,作为生物计算机来为你诊断疾病、管理药物或是搭建生物电子界面等。
瑞士联邦理工学院的马丁·富塞内格尔及其同事就朝这个梦想迈进了一大步。据《新科学家》网站6月6日报道,瑞士科研人员在两套胚胎肾细胞内,制成了两种关键的生物数字电路:半加器和半减器,它们能分别加上或减去两个二进制数。这是迄今为止制成的最复杂的生物电路,有望成为构建更先进电路的基石。相关研究报告发表在近期出版的《自然》杂志上。
富塞内格尔表示,虽然此前就曾开发过能进行简单计算的生物电路,但其多数由DNA分子或是细菌制成,很难被植入人类体内。为了使生物电路与基因疗法或细胞疗法等治疗途径挂钩,就需要在哺乳动物的细胞内建立这种电路。
普通电子计算机利用电子的存在或不存在代表1和0对信息进行编码,富塞内格尔等人则使用了细胞内自然生成的红霉素、抗生素和根皮素分子。它们能发挥输入的作用,在细胞内关闭或是开启相关反应。这一反应将导致红色或绿色荧光蛋白的生成,也标志着计算结果的产生。例如,在半加器所处的细胞内,两种分子同时存在将使其发出红光。这些反应的发生不会干扰细胞的一般功能,却允许它们在继续充当正常细胞的同时,也能“说”计算机的二进制语言。
细胞计算机却比电子计算机更加灵活,因为负责输入的分子和负责输出的蛋白都可被其他生物信号所取代,而传统的计算机只能局限于电子一种信号。这意味着生物计算机能够将由感染中获取的信号设置为输入功能,在输出时则能提供一种适当的治疗方法。此外,红色和绿色荧光蛋白等视觉信号也能发挥类似的作用,在致病因子出现时,皮肤就会发出红光。
植入人体内的细胞计算机甚至可与电子计算机直接进行交流,由于二者具有同样的逻辑,科学家希望电子计算机能和细胞更好地开展对话。事实上,研究团队已经进入了下一个阶段,其能够将决策性的逻辑编码进细胞,而不仅仅是生成一种反应。
然而,英国曼彻斯特城市大学的马廷·阿莫斯表示,由于一个细胞的输出功能并不能作为另一个细胞的输入功能,这一新途径是否能扩展至更大的计算电路仍待考证。科研人员面临的下一步挑战是如何更好地设计这些设备,以便其内部能够进行良好沟通。
Programmable single-cell mammalian biocomputers
Synthetic biology has advanced the design of standardized control devices that program cellular functions and metabolic activities in living organisms. Rational interconnection of these synthetic switches resulted in increasingly complex designer networks that execute input-triggered genetic instructions with precision, robustness and computational logic reminiscent of electronic circuits. Using trigger-controlled transcription factors, which independently control gene expression4, 5, and RNA-binding proteins that inhibit the translation of transcripts harbouring specific RNA target motifs, we have designed a set of synthetic transcription–translation control devices that could be rewired in a plug-and-play manner. Here we show that these combinatorial circuits integrated a two-molecule input and performed digital computations with NOT, AND, NAND and N-IMPLY expression logic in single mammalian cells. Functional interconnection of two N-IMPLY variants resulted in bitwise intracellular XOR operations, and a combinatorial arrangement of three logic gates enabled independent cells to perform programmable half-subtractor and half-adder calculations. Individual mammalian cells capable of executing basic molecular arithmetic functions isolated or coordinated to metabolic activities in a predictable, precise and robust manner may provide new treatment strategies and bio-electronic interfaces in future gene-based and cell-based therapies.