利用立体打印技术,以生物相容性的水凝胶以及各种细胞为材料,科学家可以快速地“打印”出3D生物结构。在将来,医生可以利用这种技术来生产所需的生物组织。在美国加州大学,一些纳米工程师开发了一种叫做动态光学投射立体打印(DOPsL)的技术,可以在几秒钟之内利用生物相容性材料生产出诸如血管或心脏组织等纳米结构。领导这个研究项目的陈绍琛博士认为,这种技术在生物医学上的应用潜力是巨大的,在短期内,该技术至少可以让科学家有能力制出更好的3D培养系统,用于在实验室内培养和研究细胞。
这种新颖的生物制造技术包含一个计算机投射系统和一个精确控制的微镜面,可以将光直接投射到含有光敏生物聚合物和细胞的溶液中某特定区域,从而使这种溶液一层层地在光的诱导下固化,生成所需要的3D结构。利用立体打印技术已经可以打印出汽车零件、工具,陈绍琛博士在这种技术上的重大突破是开发出了一套工艺,可以将纳米级的溶液打印成为生物组织。

利用动态光学投射立体打印(DOPsL)技术可以在几秒钟之内制造出生物组织
陈绍琛博士现为加州大学圣地亚哥分校纳米工程系终身教授,曾任德克萨斯大学奥斯汀分校(UT-Austin)机械工程学院教授,美国自然科学基金委纳米技术项目主任。研究方向主要包括:纳米制造及生物制造,生物材料及再生医学,纳米医学及干细胞工程,纳米光子学及生物光子学,超快激光工程,生物燃料等。陈博士的这项生物制造研究项目是在美国NIH 150万美元资助下完成的。
陈绍琛博士研究团队在立体打印技术方面今年两篇文献发表在Advanced Materials杂志上:
The topographic features of the extracelluar matrix (ECM) lay the foundation for cellular behavior. A novel biofabrication method using a digital-mirror device (DMD), called dynamic optical projection stereolithography (DOPsL) is demonstrated. This robust and versatile platform can generate complex biomimetic scaffolds within seconds. Such 3D scaffolds have promising potentials for studying cell interactions with microenvironments in vitro and in vivo.
Microfabricated Biomaterials for Engineering 3D Tissues
Mimicking natural tissue structure is crucial for engineered tissues with intended applications ranging from regenerative medicine to biorobotics. Native tissues are highly organized at the microscale, thus making these natural characteristics an integral part of creating effective biomimetic tissue structures. There exists a growing appreciation that the incorporation of similar highly organized microscale structures in tissue engineering may yield a remedy for problems ranging from vascularization to cell function control/determination. In this review, we highlight the recent progress in the field of microscale tissue engineering and discuss the use of various biomaterials for generating engineered tissue structures with microscale features. In particular, we will discuss the use of microscale approaches to engineer the architecture of scaffolds, generate artificial vasculature, and control cellular orientation and differentiation. In addition, the emergence of microfabricated tissue units and the modular assembly to emulate hierarchical tissues will be discussed.
