中国科学院成都生物研究所应用与环境微生物研究中心刘晓风课题组在生物预处理玉米秸秆酶解糖化研究取得新突破。研究结果发表于INTERNATIONAL BIODETERIORATION & BIODEGRADATION(2011,65:931-938)上。

玉米秸秆通过酶水解和生物转化后,可生成乙醇、丁醇等生物质能源
该课题组采用高效菌株毛栓菌(Trametes hirsute) Y9,对玉米秸秆进行了预处理研究。结果表明,进过42天的处理,木质素降解到达71.49%,处理后的原料酶解率到达了73.99%。对预处理后的原料电镜扫描后发现,预处理后的秸秆表面变得粗糙、纤维素纤维之间的空隙清晰可见,并且形成许多孔状。研究还证明了酶解糖化的生成量与木质素含量成反比,和纤维素、半纤维素的关联不大。
玉米秸秆是我国农业废弃物主要来源之一,每年大约有2亿吨,大部分都直接丢弃或就地焚烧,造成资源的浪费和环境污染。玉米秸秆主要由纤维素、半纤维素和木质素三大组分构成,通过酶水解和生物转化后,可生成乙醇、丁醇等生物质能源,实现约30%的能源转化。

Effect of biological pretreatment with Trametes hirsuta yj9 on enzymatic hydrolysis of corn stover
Feng-hui Sun, Jiang Li, Yue-xiang Yuan, Zhi-ying Yan, Xiao-feng Liu
In this study, a newly isolated Trametes hirsuta yj9 was used to pretreat corn stover in order to enhance enzymatic digestibility. T. hirsuta yj9 preferentially degraded lignin to be as high as 71.49% after 42-day pretreatment. Laccase and xylanase was the major ligninolytic and hydrolytic enzyme, respectively and filter paper activity (FPA) increased gradually with prolonged pretreatment time. Sugar yields increased significantly after pretreatment with T. hirsuta yj9, reaching an enzymatic digestibility of 73.99% after 42 days of pretreatment. Scanning electron microscopy (SEM) showed significant structural changes in pretreated corn stover, the surface of pretreated corn stover became increasingly coarse, the gaps between cellulose fibers were visible, and many pores were developed. Correlation analysis showed that sugar yields were inversely proportional to the lignin contents, less related to cellulose and hemicellulose contents.
文献链接:https://www.sciencedirect.com/science/article/pii/S0964830511001375
