填补国内空白!分子之心AI蛋白设计平台MoleculeOS首次公开亮相

2022-07-25 11:23 · 生物探索

7月22日,“2022 CB Insights中国未来健康论坛暨数字医疗150企业峰会”上,世界知名的智能生物科学家、分子之心创始人兼首席科学家许锦波教授携AI蛋白设计平台MoleculeOS亮相。

国内第一个功能完整的AI蛋白质设计和优化平台正式亮相。7月22日,“2022 CB Insights中国未来健康论坛暨数字医疗150企业峰会”上,世界知名的智能生物科学家、分子之心创始人兼首席科学家许锦波教授携AI蛋白设计平台MoleculeOS亮相。他表示,分子之心已完成MoleculeOS所需的关键算法和模块的开发工作,并已基于该平台开发十余项世界领先的AI算法,计算结果均远超目前全球已公开发表的最好结果。

6379434109004070994033942.png

图1 许锦波教授现场演讲

当天,分子之心入选由全球知名市场数据分析机构 CB Insights遴选的“数字经济时代下活跃的中国生物计算企业”榜单,获评“AI蛋白结构设计新星”。该榜单根据企业技术创新性、管线推进、项目合作、投融资等维度综合评选得出。

888f6ccfd5b5ed263a08eea12cbcb87.jpg

目前,我国尚没有功能完整的AI蛋白质设计和优化平台。分子之心AI蛋白设计平台MoleculeOS的构建,可以说填补了国内空白。“我们希望把MoleculeOS打造成中国生物经济时代的基础设施。”许锦波表示。

蛋白质是生命科学的基础,对蛋白结构的理解和设计可以帮助人们深入了解包括癌症、遗传病等诸多顽疾的发病机理,找到治疗更精准的路径。同时还可极大提升大分子药物的研发效率、降低成本。然而,过去半个世纪,科学家们采用的晶体衍射、核磁共振、冷冻电镜等蛋白质结构预测方法,始终存在耗时长、花费高、无法保证100%成功等问题,这导致蛋白质结构预测难题始终悬而未决。

这一困局在许锦波教授2016年的一项研究后迎来曙光。2016年,许锦波教授研发RaptorX-Contact方法,首次证明了深度学习可以大幅提高蛋白质结构预测的精度。这种方法被谷歌旗下DeepMind应用在了AlphaFold算法的开发中,推动蛋白质结构预测取得了革命性突破。许锦波教授也因此被誉为“AI蛋白质折叠技术奠基人”。

完成AI在蛋白质结构预测方面的价值验证后,许锦波教授开始将视野转向应用空间更大的AI蛋白质优化设计方向。在他看来,相比于蛋白质结构预测,蛋白质设计具备更广泛的应用场景和更具差异性的市场竞争力。一方面,相比于单链蛋白质结构预测,蛋白质的优化和设计应用场景更广泛,难度更高。另一方面,当下单链蛋白质结构预测方面已达到一定高度,下一步急需寻求更具实际应用价值的产业势能。

“MoleculeOS是分子之心正着力构建的AI驱动的蛋白质设计新引擎,”据许锦波教授介绍,MoleculeOS平台既可用于多肽、抗体、酶和小蛋白的研究和设计,将大分子创新药的研发变成可预测、可编程,为药物研发全流程提效;也可灵活且广泛地应用于化学、材料、工业、农业等领域的蛋白质优化与设计。

1658719699686234.png

图3 分子之心AI蛋白设计平台MoleculeOS技术架构

MoleculeOS平台具备两大重要功能,一是运用数据驱动的深度学习方法直接设计和生成所需要的蛋白。二是通过分析蛋白质的表达性、稳定性、成药性等特性,帮助行业专家快速识别和产生最合适的蛋白质,推动实验室研究成果在产业领域的规模化应用。

目前,分子之心正与中外多家生命科学与医学实验室展开合作,基于MoleculeOS进行各种蛋白质(特别是酶和抗体)的优化和设计研究,已开发十余项世界领先的AI算法,其计算结果远超文献报道及全世界已公开发表的最好结果。

比如,在单序列结构预测方面,分子之心用一种创新的方法,以更小参数实现了比肩meta ESMFold的效果。在蛋白质优化方面,分子之心开发了目前世界上最精确的、用于预测单点突变对蛋白质性能影响的AI算法,其不需要实验数据,即可对单点突变进行预测,算法的性能大幅刷新世界记录。在蛋白质从头设计方面,分子之心开发的蛋白质序列设计算法,在4个业界普遍使用的数据集上表现出了全球最高的NSR(自然序列恢复率),以3~8%的优势领先于斯坦福大学和Facebook等全球所有竞争对手。分子之心设计的复合物结构预测算法,在公开数据集上测试,也远好于DeepMind的AlphaFold-Multimer。

“中国AI+生物领域形式大好,”许锦波教授表示,在生命健康领域,中国拥有丰富的数据量、创新技术的土壤、非常活跃的市场,这对于推动我国医疗健康产业发展、构建良性生态具有巨大推动作用,下一步,希望能培养出更多复合型人才,既懂计算,又有医疗、生物等领域知识经验,把计算技术和医疗结合起来,将中国的数字医疗带入更广阔的未来。

排版|郭亚青